authorizing (0) (0)    Advanced Search

Follow us @  | 

weather icon

Shanghai

Mostly Cloudy/Haze

°C  | °F 23°C 31°C

Shanghai Daily,上海日报
Latest news:

Home » Sunday » People

Making a quantum leap in space research

MORE than 20 years have passed since Pan Jianwei was first astonished by the quantum world. Pondering the strange micro world has carved deep lines in the quantum physicist’s forehead.

People still don’t fully understand a phenomenon such as quantum superposition and quantum entanglement, but Pan is shining some light in the field, manipulating microscopic particles and applying the magical quantum characters to develop quantum cryptography and quantum computing.

The world’s first quantum satellite, Quantum Experiments at Space Scale, launched by China in 2016, has realized the distribution of entangled photon pairs over 1,200 kilometers. It has proved that quantum entanglement, described by Albert Einstein as a “spooky action,” still exists at such a distance.

As the satellite’s lead scientist, Pan has a greater goal: to test quantum entanglement between Earth and the moon at a distance over 300,000km, which may help research on gravity and the structure of spacetime.

Pan is a science legend. When his co-authored article about the first quantum teleportation was selected by academic journal Nature as one of the 21 classic papers for physics over the past century, he was only 29 years old. When he was appointed a professor of the University of Science and Technology of China, he was 31. When he was elected an academician of the Chinese Academy of Sciences, he was 41, the youngest academician at that time. When he won the first prize of National Natural Science, he was 45.

The star scientist and media celebrity says science should be in the spotlight rather than scientists.

Born on March 11, 1970 in Dongyang City, east China’s Zhejiang Province, Pan was an excellent student and a playful boy. He went to study in the University of Science and Technology of China in Hefei City in 1987, where academic competition was fierce.

Wu Jian, Pan’s classmate in university and now a scientist in China’s Dark Matter Particle Explorer Satellite project, recalls that he once gave Pan an ugly haircut, but he was not angry. Pan was happy-go-lucky.

In 1990, Pan first came into contact with quantum mechanics, which totally confused him. “How can there be such a phenomenon as quantum superposition? It’s like a person being in Shanghai and Beijing at the same time.”

Pan almost failed in the midterm exam on quantum mechanics.

Desperately trying to figure it out, Pan chose quantum mechanics as his research direction — and he’s still entangled with it. He realized all the theories about quantum physics had to be tested in experiments. However, China lacked the conditions to do such experiments in the 1990s.

After graduation in 1996, Pan went to Austria to do his PhD at the University of Innsbruck, studying with Anton Zeilinger, a world-renowned quantum physicist.

“When Pan came to me as a young student, he was a theoretical physicist. He had not done any experiments before. But I very soon realized he had the gift for doing experiments,” Zeilinger said.

“I assigned him to do the experiment on teleportation with a group, a very complicated experiment. He accepted it and immediately got started.”

He was full of enthusiasm. Soon he was the leading person in the experiment. When there was a problem, he was never discouraged. He always saw it as motivation to do something that had not been done before, Zeilinger says.

He was optimistic, always found solutions to problems, and always wanted to work to find something new, says Zeilinger.

He always got along with his colleagues. Now he is a global leader in the field of quantum physics. “I’m very proud of him,” said Zeilinger. “I encouraged him to go back to China. Because I could see there was a big opportunity for him in China.”

After mastering advanced quantum technology, Pan returned to the University of Science and Technology of China in 2001 to establish a quantum physics and quantum information laboratory, hoping China could quickly catch up with the pace of development in the emerging field of quantum technology.

In order to make breakthroughs in quantum information research, the lab needed scientists with different academic backgrounds.

Pan sent his students to study in Germany, Britain, the United States, Switzerland and Austria to obtain the most advanced knowledge in specialties such as cold atoms, precision measurement and multiphoton entanglement manipulation.

So far, Pan and his team have published about 200 articles in authoritative academic journals including Science, Nature and Physical Review Letters, indicating that China is at the global forefront of quantum communication.

In experiments, there is inevitably frustration. But Pan says they need patience and the key is to have fun in the process. “Pursuing the secrets of the quantum physics brings me calm and peace. It’s like walking on the lawn in the spring sunshine,” he said.

A fan of classical music, Pan says music and science both give him tranquility and happiness. In college, he read the essays of Einstein. “For me, Einstein’s essays are the most profound and beautiful sound of nature,” he said.

“The research of quantum physics has an impact on my personality and thoughts. Quantum mechanics tells me it’s very hard to define right and wrong, good and bad. It makes me tolerant.”

He also takes part in many activities to promote science in China. Development driven by innovation is one of China’s core strategies. “Building an innovation-oriented country requires nurturing the public’s interest in science,” Pan said.

He believes China can catch up with Japan in about two decades in the field of science and technology, as long as the research funds are allocated and used by the best Chinese scientists properly.

“The experiments on the QUESS satellite are the most important scientific research in my life,” said Pan.

However, the quantum world remains mysterious. Will the “spooky action” that confused even Einstein extend in space without limit?

“In theory, this bizarre connection can exist over any distance, but we think quantum entanglement might be affected by gravity. The different models need to be tested at a longer distance, and the boundary between quantum physics and the theory of relativity and study the structure of spacetime and gravity should be explored,” Pan said.


 

Copyright © 1999- Shanghai Daily. All rights reserved.Preferably viewed with Internet Explorer 8 or newer browsers.

沪公网安备 31010602000204号

Email this to your friend